41 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			41 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						||
 | 
						||
# 检查MPS可用性(需要PyTorch 1.12+和macOS 12.3+)
 | 
						||
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
 | 
						||
 | 
						||
# 生成训练数据(移动到MPS设备)
 | 
						||
X = torch.randn(1000, 2).to(device)  # 1000个样本,2个特征
 | 
						||
y = X @ torch.tensor([2.0, -3.4], device=device) + 4  # 真实关系式
 | 
						||
y += 0.01 * torch.randn(y.shape, device=device)  # 添加噪声
 | 
						||
 | 
						||
# 定义模型(必须继承nn.Module)
 | 
						||
class LinearRegression(torch.nn.Module):
 | 
						||
    def __init__(self):
 | 
						||
        super().__init__()
 | 
						||
        self.linear = torch.nn.Linear(2, 1)  # 输入2维,输出1维
 | 
						||
        
 | 
						||
    def forward(self, x):
 | 
						||
        return self.linear(x)
 | 
						||
 | 
						||
model = LinearRegression().to(device)  # 将模型移至MPS设备
 | 
						||
criterion = torch.nn.MSELoss()
 | 
						||
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
 | 
						||
 | 
						||
# 训练循环
 | 
						||
for epoch in range(500):
 | 
						||
    # 前向传播
 | 
						||
    outputs = model(X)
 | 
						||
    loss = criterion(outputs, y.unsqueeze(1))
 | 
						||
    
 | 
						||
    # 反向传播
 | 
						||
    optimizer.zero_grad()
 | 
						||
    loss.backward()
 | 
						||
    optimizer.step()
 | 
						||
    
 | 
						||
    if epoch % 50 == 0:
 | 
						||
        print(f'Epoch {epoch}, loss: {loss.item():.4f}')
 | 
						||
 | 
						||
# 输出最终参数
 | 
						||
print("Learned weights:", model.linear.weight.data)
 | 
						||
print("Learned bias:", model.linear.bias.data)
 |