# No deep learning,just function mapping $$ X = [v_1,v_2,.....,v_{784}]\\ X:[1,dx] $$ $$ H_1 = XW_{1} + b_{1} \\ W_1:[d_1,dx] \\ b_1:[d_1] $$ $$ H_2 = H_1W_2 + b_2 \\ W_1:[d_2,d_1] \\ b_1:[d_2] $$ $$ H_3=H_2W_3 + b_3 \\ W_3:[10,d_2]\\ b_3:[10] $$ ## Loss $$ H_3:[1,d_3] \\ Y:[0/1/2/.../9] \\ eg.:1\geq[0,1,0,0,0,0,0,0,0,0,0] \\ eg.:3\geq[0,0,0,1,0,0,0,0,0,0,0] \\ Euclidean\ Distance:H_3\ vs\ Y $$ ## In a nutshell $$ pred = W_3 \times \{W_2\cdot[W_1X+b_1]+b_2\}+b_3 $$