1
0
This commit is contained in:
2024-05-23 20:43:52 +08:00
parent e6da567437
commit 9a33bd6f49
11 changed files with 292 additions and 1 deletions

56
linear regression/1.py Normal file
View File

@@ -0,0 +1,56 @@
import numpy as np
import torch
def compute_error_for_line_given_points(b, w, points):
totalError = 0
N = float(len(points))
for i in range(len(points)):
x = points[i][0]
y = points[i][1]
totalError += (y - (w * x + b)) ** 2
return totalError / N
def step_gradient(b_current, w_current, points, learningRate):
b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
N = float(len(points))
for i in range(len(points)):
x = points[i][0]
y = points[i][1]
b_gradient += -(2 / N) * (y - (w_current * x + b_current) + b_current)
w_gradient += -(2 / N) * x * (y - (w_current * x + b_current + b_current))
new_b = b_current - (learningRate * b_gradient)
new_w = w_current - (learningRate * w_gradient)
return [new_b, new_w]
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
for i in range(num_iterations):
b, w = step_gradient(b, w, points, learningRate)
return [b, w]
def run():
# 修改为生成数据的文件路径
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
points = torch.tensor(points_np, device='mps')
learning_rate = 0.0001 # 使用较小的学习率
initial_b = 0.0
initial_w = 0.0
num_iterations = 1000
print("Starting gradient descent at b={0},w={1},error={2}".format(initial_b, initial_w,
compute_error_for_line_given_points(initial_b,
initial_w,
points)))
print("running...")
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
compute_error_for_line_given_points(b, w, points)))
if __name__ == '__main__':
run()