241005
This commit is contained in:
56
linear regression/m1test.py
Normal file
56
linear regression/m1test.py
Normal file
@@ -0,0 +1,56 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# 定义线性回归模型结构
|
||||
class LinearRegressionModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(LinearRegressionModel, self).__init__()
|
||||
self.linear = nn.Linear(1, 1) # 输入和输出都是1维
|
||||
|
||||
def forward(self, x):
|
||||
return self.linear(x)
|
||||
|
||||
|
||||
def main():
|
||||
# 检查是否支持MPS(Apple Metal Performance Shaders)
|
||||
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
||||
print(f"使用设备: {device}")
|
||||
|
||||
# 实例化模型并加载保存的模型参数
|
||||
model = LinearRegressionModel().to(device)
|
||||
model.load_state_dict(torch.load('m1.pth'))
|
||||
with open('m1.pth', 'rb') as f:
|
||||
f.seek(0, 2)
|
||||
size = f.tell()
|
||||
print(f"模型文件大小: {size} 字节")
|
||||
model.eval()
|
||||
# 输出模型大小
|
||||
model_size = sum(p.numel() for p in model.parameters())
|
||||
print(f"模型大小: {model_size} 个参数")
|
||||
print("模型参数已加载")
|
||||
|
||||
# 生成测试数据
|
||||
X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
|
||||
|
||||
# 使用加载的模型进行预测
|
||||
with torch.no_grad():
|
||||
y_pred = model(X_test).cpu()
|
||||
|
||||
# 将测试数据移至CPU并转换为NumPy数组
|
||||
X_test_numpy = X_test.cpu().numpy()
|
||||
y_pred_numpy = y_pred.numpy()
|
||||
|
||||
# 可视化预测结果
|
||||
plt.scatter(X_test_numpy, 3 * X_test_numpy + 2, label='真实线性关系', color='blue')
|
||||
plt.plot(X_test_numpy, y_pred_numpy, color='red', label='模型预测线')
|
||||
plt.legend()
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('y')
|
||||
plt.title('加载模型后的线性回归预测结果')
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user