Merge remote-tracking branch 'origin/main'
# Conflicts: # README.md
This commit is contained in:
@@ -2,6 +2,7 @@ import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
# 线性回归训练代码
|
||||
def compute_error_for_line_given_points(b, w, points):
|
||||
totalError = 0
|
||||
@@ -12,6 +13,7 @@ def compute_error_for_line_given_points(b, w, points):
|
||||
totalError += (y - (w * x + b)) ** 2
|
||||
return totalError / N
|
||||
|
||||
|
||||
def step_gradient(b_current, w_current, points, learningRate):
|
||||
b_gradient = torch.tensor(0.0, device=points.device)
|
||||
w_gradient = torch.tensor(0.0, device=points.device)
|
||||
@@ -25,25 +27,29 @@ def step_gradient(b_current, w_current, points, learningRate):
|
||||
new_w = w_current - (learningRate * w_gradient)
|
||||
return [new_b, new_w]
|
||||
|
||||
|
||||
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
||||
b = torch.tensor(starting_b, device=points.device)
|
||||
w = torch.tensor(starting_w, device=points.device)
|
||||
for i in range(num_iterations):
|
||||
b, w = step_gradient(b, w, points, learningRate)
|
||||
print("round:", i)
|
||||
return [b, w]
|
||||
|
||||
|
||||
def run():
|
||||
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
||||
points = torch.tensor(points_np, device='cuda')
|
||||
points = torch.tensor(points_np, device='cuda:5')
|
||||
learning_rate = 0.0001
|
||||
initial_b = 0.0
|
||||
initial_w = 0.0
|
||||
num_iterations = 100000
|
||||
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
||||
print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
|
||||
compute_error_for_line_given_points(b, w, points)))
|
||||
compute_error_for_line_given_points(b, w, points)))
|
||||
return b.item(), w.item()
|
||||
|
||||
|
||||
# 运行线性回归
|
||||
final_b, final_w = run()
|
||||
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 34 KiB |
43
mnist/README.md
Normal file
43
mnist/README.md
Normal file
@@ -0,0 +1,43 @@
|
||||
# No deep learning,just function mapping
|
||||
|
||||
$$
|
||||
X = [v_1,v_2,.....,v_{784}]\\
|
||||
X:[1,dx]
|
||||
$$
|
||||
|
||||
$$
|
||||
H_1 = XW_{1} + b_{1} \\
|
||||
W_1:[d_1,dx] \\
|
||||
b_1:[d_1]
|
||||
$$
|
||||
|
||||
$$
|
||||
H_2 = H_1W_2 + b_2 \\
|
||||
W_1:[d_2,d_1] \\
|
||||
b_1:[d_2]
|
||||
$$
|
||||
|
||||
$$
|
||||
H_3=H_2W_3 + b_3 \\
|
||||
W_3:[10,d_2]\\
|
||||
b_3:[10]
|
||||
$$
|
||||
|
||||
## Loss
|
||||
|
||||
$$
|
||||
H_3:[1,d_3] \\
|
||||
Y:[0/1/2/.../9] \\
|
||||
eg.:1\geq[0,1,0,0,0,0,0,0,0,0,0] \\
|
||||
eg.:3\geq[0,0,0,1,0,0,0,0,0,0,0] \\
|
||||
Euclidean\ Distance:H_3\ vs\ Y
|
||||
$$
|
||||
|
||||
|
||||
|
||||
## In a nutshell
|
||||
|
||||
$$
|
||||
pred = W_3 \times \{W_2\cdot[W_1X+b_1]+b_2\}+b_3
|
||||
$$
|
||||
|
||||
Reference in New Issue
Block a user