1
0
This commit is contained in:
2024-06-03 09:38:49 +08:00
parent e03a7de8f9
commit 2d1957b8c7
7 changed files with 261 additions and 103 deletions

View File

@@ -0,0 +1,67 @@
import matplotlib.pyplot as plt
import numpy as np
import torch
# 线性回归训练代码
def compute_error_for_line_given_points(b, w, points):
totalError = 0
N = float(len(points))
for i in range(len(points)):
x = points[i][0]
y = points[i][1]
totalError += (y - (w * x + b)) ** 2
return totalError / N
def step_gradient(b_current, w_current, points, learningRate):
b_gradient = torch.tensor(0.0, device=points.device)
w_gradient = torch.tensor(0.0, device=points.device)
N = float(len(points))
for i in range(len(points)):
x = points[i][0]
y = points[i][1]
b_gradient += -(2 / N) * (y - (w_current * x + b_current))
w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
new_b = b_current - (learningRate * b_gradient)
new_w = w_current - (learningRate * w_gradient)
return [new_b, new_w]
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
b = torch.tensor(starting_b, device=points.device)
w = torch.tensor(starting_w, device=points.device)
for i in range(num_iterations):
b, w = step_gradient(b, w, points, learningRate)
return [b, w]
def run():
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
points = torch.tensor(points_np, device='cuda')
learning_rate = 0.0001
initial_b = 0.0
initial_w = 0.0
num_iterations = 100000
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
compute_error_for_line_given_points(b, w, points)))
return b.item(), w.item()
# 运行线性回归
final_b, final_w = run()
# 绘制图像
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
x = points_np[:, 0]
y = points_np[:, 1]
x_range = np.linspace(min(x), max(x), 100)
y_pred = final_w * x_range + final_b
plt.figure(figsize=(8, 6))
plt.scatter(x, y, color='blue', label='Original data')
plt.plot(x_range, y_pred, color='red', label='Fitted line')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Fitting a line to random data')
plt.legend()
plt.grid(True)
plt.savefig('print1.png')
plt.show()