241005
This commit is contained in:
@@ -1,18 +0,0 @@
|
|||||||
# 1.py
|
|
||||||
|
|
||||||
$$
|
|
||||||
y = wx + b
|
|
||||||
$$
|
|
||||||
|
|
||||||
## 梯度下降算法
|
|
||||||
|
|
||||||
$$
|
|
||||||
b_gradient += -\frac{2}{N} \left(y - (w_current \cdot x + b_current)\right)
|
|
||||||
$$
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
$$
|
|
||||||
w_gradient += -\frac{2}{N} \cdot x \cdot \left(y - (w_current \cdot x + b_current)\right)
|
|
||||||
$$
|
|
||||||
|
|
||||||
@@ -1,7 +1,12 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from torch.utils.data import DataLoader, TensorDataset
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
def run1():
|
||||||
def compute_error_for_line_given_points(b, w, points):
|
def compute_error_for_line_given_points(b, w, points):
|
||||||
totalError = 0
|
totalError = 0
|
||||||
N = float(len(points))
|
N = float(len(points))
|
||||||
@@ -11,7 +16,6 @@ def compute_error_for_line_given_points(b, w, points):
|
|||||||
totalError += (y - (w * x + b)) ** 2
|
totalError += (y - (w * x + b)) ** 2
|
||||||
return totalError / N
|
return totalError / N
|
||||||
|
|
||||||
|
|
||||||
def step_gradient(b_current, w_current, points, learningRate):
|
def step_gradient(b_current, w_current, points, learningRate):
|
||||||
b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
||||||
w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
||||||
@@ -25,7 +29,6 @@ def step_gradient(b_current, w_current, points, learningRate):
|
|||||||
new_w = w_current - (learningRate * w_gradient)
|
new_w = w_current - (learningRate * w_gradient)
|
||||||
return [new_b, new_w]
|
return [new_b, new_w]
|
||||||
|
|
||||||
|
|
||||||
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
||||||
b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
|
b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
|
||||||
w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
|
w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
|
||||||
@@ -33,7 +36,6 @@ def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_it
|
|||||||
b, w = step_gradient(b, w, points, learningRate)
|
b, w = step_gradient(b, w, points, learningRate)
|
||||||
return [b, w]
|
return [b, w]
|
||||||
|
|
||||||
|
|
||||||
def run():
|
def run():
|
||||||
# 修改为生成数据的文件路径
|
# 修改为生成数据的文件路径
|
||||||
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
||||||
@@ -49,8 +51,260 @@ def run():
|
|||||||
print("running...")
|
print("running...")
|
||||||
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
||||||
print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
|
print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
|
||||||
compute_error_for_line_given_points(b, w, points)))
|
compute_error_for_line_given_points(b, w,
|
||||||
|
points)))
|
||||||
|
|
||||||
|
run()
|
||||||
|
|
||||||
|
def run1_cuda():
|
||||||
|
def compute_error_for_line_given_points(b, w, points):
|
||||||
|
totalError = 0
|
||||||
|
N = float(len(points))
|
||||||
|
for i in range(len(points)):
|
||||||
|
x = points[i][0]
|
||||||
|
y = points[i][1]
|
||||||
|
totalError += (y - (w * x + b)) ** 2
|
||||||
|
return totalError / N
|
||||||
|
|
||||||
|
def step_gradient(b_current, w_current, points, learningRate):
|
||||||
|
b_gradient = torch.tensor(0.0, device=points.device)
|
||||||
|
w_gradient = torch.tensor(0.0, device=points.device)
|
||||||
|
N = float(len(points))
|
||||||
|
for i in range(len(points)):
|
||||||
|
x = points[i][0]
|
||||||
|
y = points[i][1]
|
||||||
|
b_gradient += -(2 / N) * (y - (w_current * x + b_current))
|
||||||
|
w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
|
||||||
|
new_b = b_current - (learningRate * b_gradient)
|
||||||
|
new_w = w_current - (learningRate * w_gradient)
|
||||||
|
return [new_b, new_w]
|
||||||
|
|
||||||
|
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
||||||
|
b = torch.tensor(starting_b, device=points.device)
|
||||||
|
w = torch.tensor(starting_w, device=points.device)
|
||||||
|
for i in range(num_iterations):
|
||||||
|
b, w = step_gradient(b, w, points, learningRate)
|
||||||
|
print("round:", i)
|
||||||
|
return [b, w]
|
||||||
|
|
||||||
|
def run():
|
||||||
|
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
||||||
|
points = torch.tensor(points_np, device='cuda')
|
||||||
|
learning_rate = 0.0001
|
||||||
|
initial_b = 0.0
|
||||||
|
initial_w = 0.0
|
||||||
|
num_iterations = 100000
|
||||||
|
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
||||||
|
print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
|
||||||
|
compute_error_for_line_given_points(b, w,
|
||||||
|
points)))
|
||||||
|
return b.item(), w.item()
|
||||||
|
|
||||||
|
# 运行线性回归
|
||||||
|
final_b, final_w = run()
|
||||||
|
|
||||||
|
# 绘制图像
|
||||||
|
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
||||||
|
x = points_np[:, 0]
|
||||||
|
y = points_np[:, 1]
|
||||||
|
|
||||||
|
x_range = np.linspace(min(x), max(x), 100)
|
||||||
|
y_pred = final_w * x_range + final_b
|
||||||
|
|
||||||
|
plt.figure(figsize=(8, 6))
|
||||||
|
plt.scatter(x, y, color='blue', label='Original data')
|
||||||
|
plt.plot(x_range, y_pred, color='red', label='Fitted line')
|
||||||
|
plt.xlabel('X')
|
||||||
|
plt.ylabel('Y')
|
||||||
|
plt.title('Fitting a line to random data')
|
||||||
|
plt.legend()
|
||||||
|
plt.grid(True)
|
||||||
|
plt.savefig('print1.png')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def run1x():
|
||||||
|
# 线性回归训练代码
|
||||||
|
def compute_error_for_line_given_points(b, w, points):
|
||||||
|
totalError = 0
|
||||||
|
N = float(len(points))
|
||||||
|
for i in range(len(points)):
|
||||||
|
x = points[i][0]
|
||||||
|
y = points[i][1]
|
||||||
|
totalError += (y - (w * x + b)) ** 2
|
||||||
|
return totalError / N
|
||||||
|
|
||||||
|
def step_gradient(b_current, w_current, points, learningRate):
|
||||||
|
b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
||||||
|
w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
||||||
|
N = float(len(points))
|
||||||
|
for i in range(len(points)):
|
||||||
|
x = points[i][0]
|
||||||
|
y = points[i][1]
|
||||||
|
b_gradient += -(2 / N) * (y - (w_current * x + b_current))
|
||||||
|
w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
|
||||||
|
new_b = b_current - (learningRate * b_gradient)
|
||||||
|
new_w = w_current - (learningRate * w_gradient)
|
||||||
|
return [new_b, new_w]
|
||||||
|
|
||||||
|
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
||||||
|
b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
|
||||||
|
w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
|
||||||
|
for i in range(num_iterations):
|
||||||
|
b, w = step_gradient(b, w, points, learningRate)
|
||||||
|
return [b, w]
|
||||||
|
|
||||||
|
def run():
|
||||||
|
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
||||||
|
points = torch.tensor(points_np, device='mps')
|
||||||
|
learning_rate = 0.0001
|
||||||
|
initial_b = 0.0
|
||||||
|
initial_w = 0.0
|
||||||
|
num_iterations = 5000
|
||||||
|
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
||||||
|
print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
|
||||||
|
compute_error_for_line_given_points(b, w,
|
||||||
|
points)))
|
||||||
|
return b.item(), w.item()
|
||||||
|
|
||||||
|
# 运行线性回归
|
||||||
|
final_b, final_w = run()
|
||||||
|
|
||||||
|
# 绘制图像
|
||||||
|
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
||||||
|
x = points_np[:, 0]
|
||||||
|
y = points_np[:, 1]
|
||||||
|
|
||||||
|
x_range = np.linspace(min(x), max(x), 100)
|
||||||
|
y_pred = final_w * x_range + final_b
|
||||||
|
|
||||||
|
plt.figure(figsize=(8, 6))
|
||||||
|
plt.scatter(x, y, color='blue', label='Original data')
|
||||||
|
plt.plot(x_range, y_pred, color='red', label='Fitted line')
|
||||||
|
plt.xlabel('X')
|
||||||
|
plt.ylabel('Y')
|
||||||
|
plt.title('Fitting a line to random data')
|
||||||
|
plt.legend()
|
||||||
|
plt.grid(True)
|
||||||
|
plt.savefig('print1.png')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def run_m1():
|
||||||
|
# 检查是否支持MPS(Apple Metal Performance Shaders)
|
||||||
|
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
||||||
|
print(f"使用设备: {device}")
|
||||||
|
|
||||||
|
# 生成示例数据
|
||||||
|
# y = 3x + 2 + 噪声
|
||||||
|
torch.manual_seed(0)
|
||||||
|
X = torch.linspace(-10, 10, steps=100).reshape(-1, 1)
|
||||||
|
y = 3 * X + 2 + torch.randn(X.size()) * 2
|
||||||
|
|
||||||
|
# 创建数据集和数据加载器
|
||||||
|
dataset = TensorDataset(X, y)
|
||||||
|
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)
|
||||||
|
|
||||||
|
# 定义线性回归模型
|
||||||
|
class LinearRegressionModel(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(LinearRegressionModel, self).__init__()
|
||||||
|
self.linear = nn.Linear(1, 1) # 输入和输出都是1维
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.linear(x)
|
||||||
|
|
||||||
|
# 实例化模型并移动到设备
|
||||||
|
model = LinearRegressionModel().to(device)
|
||||||
|
|
||||||
|
# 定义损失函数和优化器
|
||||||
|
criterion = nn.MSELoss()
|
||||||
|
optimizer = optim.SGD(model.parameters(), lr=0.01)
|
||||||
|
|
||||||
|
# 训练模型
|
||||||
|
num_epochs = 100
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
for batch_X, batch_y in dataloader:
|
||||||
|
batch_X = batch_X.to(device)
|
||||||
|
batch_y = batch_y.to(device)
|
||||||
|
|
||||||
|
# 前向传播
|
||||||
|
outputs = model(batch_X)
|
||||||
|
loss = criterion(outputs, batch_y)
|
||||||
|
|
||||||
|
# 反向传播和优化
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if (epoch + 1) % 10 == 0:
|
||||||
|
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}")
|
||||||
|
|
||||||
|
# 保存整个模型
|
||||||
|
torch.save(model.state_dict(), 'm1.pth')
|
||||||
|
print("整个模型已保存为 m1.pth")
|
||||||
|
|
||||||
|
# 评估模型
|
||||||
|
model.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
|
||||||
|
y_pred = model(X_test).cpu()
|
||||||
|
|
||||||
|
plt.scatter(X.numpy(), y.numpy(), label='真实数据')
|
||||||
|
plt.plot(X_test.cpu().numpy(), y_pred.numpy(), color='red', label='预测线')
|
||||||
|
plt.legend()
|
||||||
|
plt.xlabel('X')
|
||||||
|
plt.ylabel('y')
|
||||||
|
plt.title('线性回归结果')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def run_m1_test():
|
||||||
|
# 定义线性回归模型结构
|
||||||
|
class LinearRegressionModel(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(LinearRegressionModel, self).__init__()
|
||||||
|
self.linear = nn.Linear(1, 1) # 输入和输出都是1维
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.linear(x)
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# 检查是否支持MPS(Apple Metal Performance Shaders)
|
||||||
|
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
||||||
|
print(f"使用设备: {device}")
|
||||||
|
|
||||||
|
# 实例化模型并加载保存的模型参数
|
||||||
|
model = LinearRegressionModel().to(device)
|
||||||
|
model.load_state_dict(torch.load('m1.pth'))
|
||||||
|
with open('m1.pth', 'rb') as f:
|
||||||
|
f.seek(0, 2)
|
||||||
|
size = f.tell()
|
||||||
|
print(f"模型文件大小: {size} 字节")
|
||||||
|
model.eval()
|
||||||
|
# 输出模型大小
|
||||||
|
model_size = sum(p.numel() for p in model.parameters())
|
||||||
|
print(f"模型大小: {model_size} 个参数")
|
||||||
|
print("模型参数已加载")
|
||||||
|
|
||||||
|
# 生成测试数据
|
||||||
|
X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
|
||||||
|
|
||||||
|
# 使用加载的模型进行预测
|
||||||
|
with torch.no_grad():
|
||||||
|
y_pred = model(X_test).cpu()
|
||||||
|
|
||||||
|
# 将测试数据移至CPU并转换为NumPy数组
|
||||||
|
X_test_numpy = X_test.cpu().numpy()
|
||||||
|
y_pred_numpy = y_pred.numpy()
|
||||||
|
|
||||||
|
# 可视化预测结果
|
||||||
|
plt.scatter(X_test_numpy, 3 * X_test_numpy + 2, label='真实线性关系', color='blue')
|
||||||
|
plt.plot(X_test_numpy, y_pred_numpy, color='red', label='模型预测线')
|
||||||
|
plt.legend()
|
||||||
|
plt.xlabel('X')
|
||||||
|
plt.ylabel('y')
|
||||||
|
plt.title('加载模型后的线性回归预测结果')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
main()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
run()
|
print("start")
|
||||||
|
|||||||
@@ -1,73 +0,0 @@
|
|||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
# 线性回归训练代码
|
|
||||||
def compute_error_for_line_given_points(b, w, points):
|
|
||||||
totalError = 0
|
|
||||||
N = float(len(points))
|
|
||||||
for i in range(len(points)):
|
|
||||||
x = points[i][0]
|
|
||||||
y = points[i][1]
|
|
||||||
totalError += (y - (w * x + b)) ** 2
|
|
||||||
return totalError / N
|
|
||||||
|
|
||||||
|
|
||||||
def step_gradient(b_current, w_current, points, learningRate):
|
|
||||||
b_gradient = torch.tensor(0.0, device=points.device)
|
|
||||||
w_gradient = torch.tensor(0.0, device=points.device)
|
|
||||||
N = float(len(points))
|
|
||||||
for i in range(len(points)):
|
|
||||||
x = points[i][0]
|
|
||||||
y = points[i][1]
|
|
||||||
b_gradient += -(2 / N) * (y - (w_current * x + b_current))
|
|
||||||
w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
|
|
||||||
new_b = b_current - (learningRate * b_gradient)
|
|
||||||
new_w = w_current - (learningRate * w_gradient)
|
|
||||||
return [new_b, new_w]
|
|
||||||
|
|
||||||
|
|
||||||
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
|
||||||
b = torch.tensor(starting_b, device=points.device)
|
|
||||||
w = torch.tensor(starting_w, device=points.device)
|
|
||||||
for i in range(num_iterations):
|
|
||||||
b, w = step_gradient(b, w, points, learningRate)
|
|
||||||
print("round:", i)
|
|
||||||
return [b, w]
|
|
||||||
|
|
||||||
|
|
||||||
def run():
|
|
||||||
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
|
||||||
points = torch.tensor(points_np, device='cuda')
|
|
||||||
learning_rate = 0.0001
|
|
||||||
initial_b = 0.0
|
|
||||||
initial_w = 0.0
|
|
||||||
num_iterations = 100000
|
|
||||||
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
|
||||||
print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
|
|
||||||
compute_error_for_line_given_points(b, w, points)))
|
|
||||||
return b.item(), w.item()
|
|
||||||
|
|
||||||
|
|
||||||
# 运行线性回归
|
|
||||||
final_b, final_w = run()
|
|
||||||
|
|
||||||
# 绘制图像
|
|
||||||
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
|
||||||
x = points_np[:, 0]
|
|
||||||
y = points_np[:, 1]
|
|
||||||
|
|
||||||
x_range = np.linspace(min(x), max(x), 100)
|
|
||||||
y_pred = final_w * x_range + final_b
|
|
||||||
|
|
||||||
plt.figure(figsize=(8, 6))
|
|
||||||
plt.scatter(x, y, color='blue', label='Original data')
|
|
||||||
plt.plot(x_range, y_pred, color='red', label='Fitted line')
|
|
||||||
plt.xlabel('X')
|
|
||||||
plt.ylabel('Y')
|
|
||||||
plt.title('Fitting a line to random data')
|
|
||||||
plt.legend()
|
|
||||||
plt.grid(True)
|
|
||||||
plt.savefig('print1.png')
|
|
||||||
plt.show()
|
|
||||||
@@ -1,72 +0,0 @@
|
|||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
# 线性回归训练代码
|
|
||||||
def compute_error_for_line_given_points(b, w, points):
|
|
||||||
totalError = 0
|
|
||||||
N = float(len(points))
|
|
||||||
for i in range(len(points)):
|
|
||||||
x = points[i][0]
|
|
||||||
y = points[i][1]
|
|
||||||
totalError += (y - (w * x + b)) ** 2
|
|
||||||
return totalError / N
|
|
||||||
|
|
||||||
|
|
||||||
def step_gradient(b_current, w_current, points, learningRate):
|
|
||||||
b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
|
||||||
w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
|
|
||||||
N = float(len(points))
|
|
||||||
for i in range(len(points)):
|
|
||||||
x = points[i][0]
|
|
||||||
y = points[i][1]
|
|
||||||
b_gradient += -(2 / N) * (y - (w_current * x + b_current))
|
|
||||||
w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
|
|
||||||
new_b = b_current - (learningRate * b_gradient)
|
|
||||||
new_w = w_current - (learningRate * w_gradient)
|
|
||||||
return [new_b, new_w]
|
|
||||||
|
|
||||||
|
|
||||||
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
|
||||||
b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
|
|
||||||
w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
|
|
||||||
for i in range(num_iterations):
|
|
||||||
b, w = step_gradient(b, w, points, learningRate)
|
|
||||||
return [b, w]
|
|
||||||
|
|
||||||
|
|
||||||
def run():
|
|
||||||
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
|
||||||
points = torch.tensor(points_np, device='mps')
|
|
||||||
learning_rate = 0.0001
|
|
||||||
initial_b = 0.0
|
|
||||||
initial_w = 0.0
|
|
||||||
num_iterations = 5000
|
|
||||||
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
|
||||||
print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
|
|
||||||
compute_error_for_line_given_points(b, w, points)))
|
|
||||||
return b.item(), w.item()
|
|
||||||
|
|
||||||
|
|
||||||
# 运行线性回归
|
|
||||||
final_b, final_w = run()
|
|
||||||
|
|
||||||
# 绘制图像
|
|
||||||
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
|
||||||
x = points_np[:, 0]
|
|
||||||
y = points_np[:, 1]
|
|
||||||
|
|
||||||
x_range = np.linspace(min(x), max(x), 100)
|
|
||||||
y_pred = final_w * x_range + final_b
|
|
||||||
|
|
||||||
plt.figure(figsize=(8, 6))
|
|
||||||
plt.scatter(x, y, color='blue', label='Original data')
|
|
||||||
plt.plot(x_range, y_pred, color='red', label='Fitted line')
|
|
||||||
plt.xlabel('X')
|
|
||||||
plt.ylabel('Y')
|
|
||||||
plt.title('Fitting a line to random data')
|
|
||||||
plt.legend()
|
|
||||||
plt.grid(True)
|
|
||||||
plt.savefig('print1.png')
|
|
||||||
plt.show()
|
|
||||||
@@ -1,76 +0,0 @@
|
|||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.optim as optim
|
|
||||||
from torch.utils.data import DataLoader, TensorDataset
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
|
|
||||||
# 检查是否支持MPS(Apple Metal Performance Shaders)
|
|
||||||
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
|
||||||
print(f"使用设备: {device}")
|
|
||||||
|
|
||||||
# 生成示例数据
|
|
||||||
# y = 3x + 2 + 噪声
|
|
||||||
torch.manual_seed(0)
|
|
||||||
X = torch.linspace(-10, 10, steps=100).reshape(-1, 1)
|
|
||||||
y = 3 * X + 2 + torch.randn(X.size()) * 2
|
|
||||||
|
|
||||||
# 创建数据集和数据加载器
|
|
||||||
dataset = TensorDataset(X, y)
|
|
||||||
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)
|
|
||||||
|
|
||||||
|
|
||||||
# 定义线性回归模型
|
|
||||||
class LinearRegressionModel(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super(LinearRegressionModel, self).__init__()
|
|
||||||
self.linear = nn.Linear(1, 1) # 输入和输出都是1维
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.linear(x)
|
|
||||||
|
|
||||||
|
|
||||||
# 实例化模型并移动到设备
|
|
||||||
model = LinearRegressionModel().to(device)
|
|
||||||
|
|
||||||
# 定义损失函数和优化器
|
|
||||||
criterion = nn.MSELoss()
|
|
||||||
optimizer = optim.SGD(model.parameters(), lr=0.01)
|
|
||||||
|
|
||||||
# 训练模型
|
|
||||||
num_epochs = 100
|
|
||||||
for epoch in range(num_epochs):
|
|
||||||
for batch_X, batch_y in dataloader:
|
|
||||||
batch_X = batch_X.to(device)
|
|
||||||
batch_y = batch_y.to(device)
|
|
||||||
|
|
||||||
# 前向传播
|
|
||||||
outputs = model(batch_X)
|
|
||||||
loss = criterion(outputs, batch_y)
|
|
||||||
|
|
||||||
# 反向传播和优化
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
if (epoch + 1) % 10 == 0:
|
|
||||||
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}")
|
|
||||||
|
|
||||||
# 保存整个模型
|
|
||||||
torch.save(model.state_dict(), 'm1.pth')
|
|
||||||
print("整个模型已保存为 m1.pth")
|
|
||||||
|
|
||||||
# 评估模型
|
|
||||||
model.eval()
|
|
||||||
with torch.no_grad():
|
|
||||||
X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
|
|
||||||
y_pred = model(X_test).cpu()
|
|
||||||
|
|
||||||
|
|
||||||
plt.scatter(X.numpy(), y.numpy(), label='真实数据')
|
|
||||||
plt.plot(X_test.cpu().numpy(), y_pred.numpy(), color='red', label='预测线')
|
|
||||||
plt.legend()
|
|
||||||
plt.xlabel('X')
|
|
||||||
plt.ylabel('y')
|
|
||||||
plt.title('线性回归结果')
|
|
||||||
plt.show()
|
|
||||||
@@ -1,56 +0,0 @@
|
|||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
|
|
||||||
# 定义线性回归模型结构
|
|
||||||
class LinearRegressionModel(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super(LinearRegressionModel, self).__init__()
|
|
||||||
self.linear = nn.Linear(1, 1) # 输入和输出都是1维
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.linear(x)
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
# 检查是否支持MPS(Apple Metal Performance Shaders)
|
|
||||||
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
|
||||||
print(f"使用设备: {device}")
|
|
||||||
|
|
||||||
# 实例化模型并加载保存的模型参数
|
|
||||||
model = LinearRegressionModel().to(device)
|
|
||||||
model.load_state_dict(torch.load('m1.pth'))
|
|
||||||
with open('m1.pth', 'rb') as f:
|
|
||||||
f.seek(0, 2)
|
|
||||||
size = f.tell()
|
|
||||||
print(f"模型文件大小: {size} 字节")
|
|
||||||
model.eval()
|
|
||||||
# 输出模型大小
|
|
||||||
model_size = sum(p.numel() for p in model.parameters())
|
|
||||||
print(f"模型大小: {model_size} 个参数")
|
|
||||||
print("模型参数已加载")
|
|
||||||
|
|
||||||
# 生成测试数据
|
|
||||||
X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
|
|
||||||
|
|
||||||
# 使用加载的模型进行预测
|
|
||||||
with torch.no_grad():
|
|
||||||
y_pred = model(X_test).cpu()
|
|
||||||
|
|
||||||
# 将测试数据移至CPU并转换为NumPy数组
|
|
||||||
X_test_numpy = X_test.cpu().numpy()
|
|
||||||
y_pred_numpy = y_pred.numpy()
|
|
||||||
|
|
||||||
# 可视化预测结果
|
|
||||||
plt.scatter(X_test_numpy, 3 * X_test_numpy + 2, label='真实线性关系', color='blue')
|
|
||||||
plt.plot(X_test_numpy, y_pred_numpy, color='red', label='模型预测线')
|
|
||||||
plt.legend()
|
|
||||||
plt.xlabel('X')
|
|
||||||
plt.ylabel('y')
|
|
||||||
plt.title('加载模型后的线性回归预测结果')
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
Reference in New Issue
Block a user